Prüfgerechte Tolerierung Maß, Form und Lage

Möglichkeiten der neuen GPS-Normen

ZEISS ACADEMY METROLOGY

Prüfgerechte Tolerierung Maß, Form und Lage

Zusammengestellt von Robert Roithmeier Oberkochen – 2016

Eine Publikation der ZEISS Metrology Academy

Inhaltsverzeichnis 7

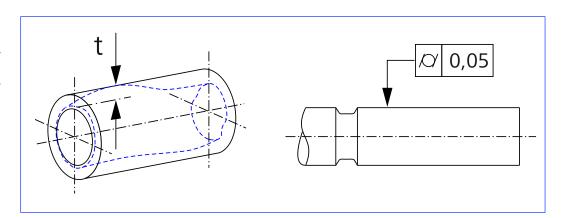
Inhalt

1 Ein	ıführun	g	. 10
1.1	Funkti	ons-, fertigungs- und prüfgerechte	
	Konstr	uktion	. 10
1.2	Zusam	menarbeit der Bereiche	. 14
2 Pri	üfgerec	hte Maß-, Form- und Lagetolerierung	. 21
3 Fo	rm		. 25
3.1	Linienł	nafte Form	. 30
	3.1.1	Rundheit	. 30
	3.1.2	Geradheit einer Linie in einer Ebene	. 32
	3.1.3	Geradheit einer Achse	. 34
	3.1.4	Geradheit von Mantellinien	. 37
	3.1.5	Einfache Profilform einer Linie	. 38
3.2	Fläche	nhafte Form	. 40
	3.2.1	Zylinderform	. 40
	3.2.2	Ebenheit einer Fläche	. 42
	3.2.3	Ebenheit einer Mittelebene	. 43
	3.2.4	Einfache Profilform einer Fläche	. 44
4 Gr	ößenm	aß	. 47
5 Hü	llbedin	gung und Unabhängigkeitsbedingung	. 53
6 Be	zug		. 61
6.1	Bezug:	selement	. 61
6.2	Bezug:	ssystem	. 66
7 Ric	htung	und Winkel	. 75
7.1	Varian	ten der Richtungstolerierung	. 76
	7.1.1	Richtung einer Ebene	. 76
	7.1.2	Richtung einer Achse	. 79
	7.1.3	Richtung einer Mantellinie	. 81
7.2	Neigur	ng statt Winkel	. 84

8 Inhaltsverzeichnis

8 0	rt und A	Abstand	86
8.1	Ortsto	olerierung	86
	8.1.1	Position einer Ebene	87
	8.1.2	Position von Achsen	89
	8.1.3	Symmetrie	91
	8.1.4	Koaxialität und Konzentrizität	92
8.2	Profilf	orm mit Bezug	95
8.3	Ort sta	att Abstand	99
9 Lo	chbild	und Verbundtoleranz	102
9.1	Positio	on bei einem Lochbild	102
9.2	Verbu	ndtolerierung	105
10 La	uf		110
10.1	Lauf a	n einer Ebene	110
10.2	Lauf a	n einer Mantelfläche	112
11 To	oleranza	ausnutzung von Form- und	
La	getoler	anzen	114
11.1	Maxin	num-Material-Bedingung	114
11.2	Umge	kehrte Toleranzausnutzung	120
11.3	Minim	num-Material-Bedingung	122
12 Ei	ngeschi	ränkte Toleranzzone und Bezugsbe	ereich 126
12.1	Einges	schränkte Toleranzzone	126
12.2	Einges	schränkter Bezugsbereich	128
12.3	Projizi	erte Toleranzzone	130
13 Al	lgemeir	ntoleranzen	132
14 Ze	eichnun	gsangaben zur Messstrategie	138
14.1	Assoz	iation	138
14.2	Filtere	intragungen	140
14.3	Ausflu	ıg in die Konturanalyse	141
	14.3.1	l Digitales Filtern	150

	14.3.2 Tiefpass: Analyse der Werkstückform 152
	14.3.3 Hochpass und Bandpass 157
	14.3.4 Anmerkungen zur digitalen Filterung 160
15 Pri	üfmitteleignung 164
15.1	Messsystemanalyse: Fähigkeit und GR&R-Test 170
15.2	GUM und VDA 5 171
16 Scl	nlussbemerkungen174
Anhar	ng176
Α	Weitere Bücher der ZEISS Metrology Academy . 176
В	Wichtige ISO-, US- und DIN-Normen 179
C	Literaturquellen ohne Normen
D	Bilder und Tabellen
F	Index 194


40 **3** Form

3.2 Flächenhafte Form

3.2.1 Zylinderform

Bei der Zylinderformtolerierung²² (Symbol: 🗷) besteht die Toleranzzone aus zwei koaxialen Zylindern (zwei Zylindern mit derselben Achse) vom Abstand t (siehe Bild 16 am Beispiel einer Zylinderformprüfung einer Welle). Der Toleranzpfeil zeigt dabei stets auf die Mantelfläche, ein Durchmesserzeichen Ø wird nicht angebracht.

Bild 16: Zylinderformtoleranz einer Welle

Implizite Toleranzen

Die Zylinderform beschränkt implizit auch die Rundheit der einzelnen Kreisschnitte, die Geradheit der Zylinderachse sowie die Geradheit und die Parallelität²³ der Mantellinien²⁴.

🛮 beinhaltet:	\bigcirc und \square _{Achse} und	-Mantel und // Mante
---------------	---	----------------------

²² Statt Zylinderform wird auch von der Zylindrizität gesprochen, also z.B. Zylindrizitätsabweichung statt Zylinderformabweichung. In diesem Buch wird auf diese Ausdrucksweise verzichtet, da sie schwieriger auszusprechen ist.

²³ Zur Parallelität siehe Kapitel 7, ab Seite 75

Wenn also die Zylinderformabweichung z.B. max. 0,03 mm ist, kann keine einzelne Rundheitsabweichung größer als 0,03 mm sein. Auch die Geradheitsabweichung kann max. 0,03 mm sein. Allerdings kann in die Parallelitätsabweichung gegenüberliegender Mantellinien den doppelten Wert, also 0,06 mm, erreichen.

3 Form 41

Der Zylinder wird als Ganzes geprüft. In der Messtechnik sind also ausreichend viele Oberflächenpunkte (z.B. als 3, 5 oder 7 Kreisschnitte) aufzunehmen. Die Prüfung der Zylinderform ist wiederum nur mit einem Koordinatenmessgerät oder einem Formprüfgerät möglich.

Prüfung

Die Zylinderformtolerierung trifft – analog zur Rundheitsprüfung – keine Aussage zum Durchmesser oder zum Mittelpunkt des Geometrieelements. Allerdings wird mit der Zylinderformtoleranz im Gegensatz zur Rundheitstoleranz z.B. die Kegelförmigkeit des Werkstücks begrenzt (Beispiele siehe Tabelle 4).

Beispiele für Ab- weichungsarten	Grafik	Abweichung wird durch Tolerierung erfasst? 🗷 ja
Seitliche Ansicht: Kegelförmig, konkav oder konvex		O nein □ _{Achse} nein □ _{Mantel} ja
Seitliche Ansicht: Werkstück nicht koa- xial		O nein Achse ja Mantel ja
Seitliche Ansicht: Werkstück krumm		o nein Achse ja Mantel ja
Draufsicht: Dreibogen- gleichdick oder ellip- senförmig		O ja □ _{Achse} nein □ _{Mantel} nein

Tabelle 4: Formabweichungen von Zylindern und geeignete Tolerierungsarten zur Erfassung

42 **3** Form

3.2.2 Ebenheit einer Fläche

 \square

Ebene

Bei der Ebenheitstolerierung (Symbol: 🗷) einer Fläche wird die Toleranzzone durch zwei parallele, gerade Ebenen vom Abstand t begrenzt (siehe Bild 17).

Bild 17: Ebenheit einer Fläche

Prüfung

Die Prüfung der Ebenheit soll durch Aufnahme möglichst vieler Oberflächenpunkte erfolgen. Beim taktilen Messen mit einem Koordinatenmessgerät ist es ökonomisch vertretbar, nur wenige Messlinien in Längs- und in Querrichtung oder wenige kreisförmige Messlinien aufzunehmen. Hier ist es von hoher Wichtigkeit, Funktion und Fertigung des Werkstücks genau zu kennen, um die "richtigen" Messlinien zu erfassen. Diese Prüfung gibt keine Aussage über die Neigung der beiden parallelen Ebenen der Toleranzzone zur Nenngeometrie. Bei der Prüfung wird lediglich der kleinstmögliche Abstand zweier geeigneter paralleler Ebenen, die alle gemessenen Oberflächenpunkte einer Messlinie einschließen, mit dem Abstand t aus der Toleranzvorgabe verglichen.

ISO-ASME-Unterschied Wenn die gemeinsame Ebenheit von mehreren Flächen geprüft werden soll, ist laut ISO-Normung wieder das Kürzel "CZ" (für Common Zone = gemeinsame Toleranzzone) neben dem Symbol 🗷 anzugeben. Im Gegensatz dazu schreibt die US-amerikanischen Norm [ASME Y14.5] vor, hier mit der Profilformtolerierung von Flächen 🖻

3 Form 43

(siehe Kapitel 3.2.4) zu arbeiten. Statt der Angabe von "CZ" wird in der ASME-Normung "2 Surfaces" (engl. für "2 Oberflächen") oder Ähnliches am Toleranzrahmen notiert (siehe Bild 18).

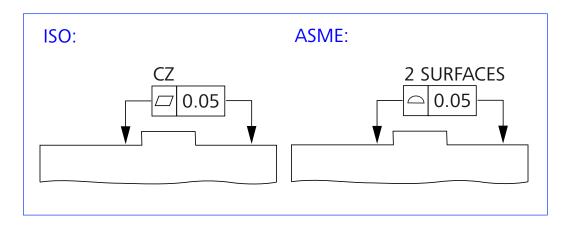


Bild 18: Gemeinsame Ebenheit ISO-ASME-Unterschied

3.2.3 Ebenheit einer Mittelebene

Die Ebenheitstolerierung (Symbol: 🗷) einer Mittelebene (Symmetriefläche) funktioniert fast genauso wie die Ebenheitstolerierung einer Fläche. Jedoch wird die Mittelebene aus den Mittelpunkten der gegenüberliegenden Punkte gebildet (siehe Bild 19).

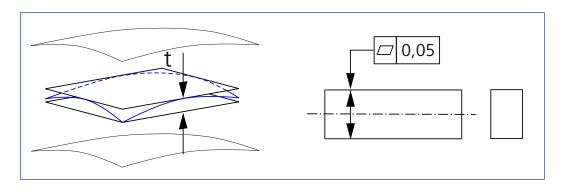


Bild 19: Ebenheit einer Mittelebene

Im Gegensatz zur ISO-Normung gilt die Ebenheit in der US-amerikanischen Norm [ASME Y14.5] nur für wirkliche Geometrieelemente. *Unterschied*

44 3 Form

Für Mittelebenen wird hingegen das Geradheitssymbol — verwendet [JORDEN 2007].

Prüfung

Die Prüfung der Ebenheit einer Mittelebene kann nur mit einem Koordinatenmessgerät durchgeführt werden. Beim Messen sind die beiden Flächen ausreichend zu erfassen, aus denen die Mittelebene gebildet wird. Die Mittelebene wird hierbei als Satz einzelner Symmetriepunkte gegenüberliegender Messpunkte berechnet, die jeweils senkrecht zur tatsächlichen lokalen (Gauss-)Mittelebene aufgenommen werden müssen.

Implizite Toleranzen

Die Ebenheit beschränkt implizit auch die Geradheit einzelner Messlinien.

\square_{Ol}	erfläche	bezie	hung	sweise	- _{Mitt}	ellinie
----------------	----------	-------	------	--------	-------------------	---------

3.2.4 Einfache Profilform einer Fläche

Wenn die geometrische Form einer tolerierten Fläche nicht durch eine Zylindertolerierung oder Ebenheitstolerierung beschrieben werden kann, da die Fläche frei gekrümmt ist (Freiformfläche), so verwendet man die Profilformtolerierung einer Fläche²⁵. Die Profilform einer Fläche ist die allgemeine Form, Zylinderform und Ebenheit sind nur lediglich Spezialfälle dieser Tolerierungsart. Die Profilformtolerierung einer Fläche (Symbol:) grenzt beliebige beschriebene Flächen ein. Hierbei müssen alle Oberflächenpunkte der tolerierten Geomet-

Δ

Die hier besprochene Profilformtoleranz einer Fläche ist ohne Bezug. Zur Profilformtoleranz einer Fläche mit Bezug sei auf Kapitel 8.2, Seite 94 verwiesen.

3 Form 45

rie innerhalb zweier Freiformflächen liegen, die Kugeln vom Durchmesser t einhüllen (siehe Bild 20). Die Beschreibung der Kurvenform (des Profils) erfolgt wiederum zumeist als Datensatz.

Die Profilform einer Fläche kann sinnvoll meist nur mit einem Koordinatenmessgerät geprüft werden. Diese Tolerierung erlaubt keine Aussage zur Richtungs- oder Ortstreue des Profils, solange dieses nicht mit Bezügen²⁶ versehen ist.

Prüfung

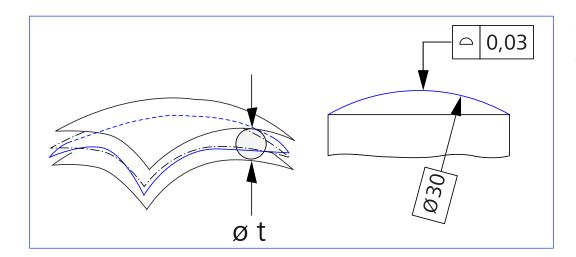


Bild 20: Profilformtoleranz einer Fläche

Die Profilform einer Fläche beschränkt implizit auch die Profilform einer Linie.

🗅 beinhaltet: 🗅

Implizite Toleranzen

Am Ende dieses Kapitels über Formtolerierung muss nochmal auf die Eingangs erwähnte Problematik (siehe Bild 5 auf Seite 24) hingewie-

Abschließende Bemerkung

²⁶

46 3 Form

sen werden. Damit die gesamte GPS nicht nur funktions- und fertigungsgerecht, sondern auch prüfgerecht ist, ist folgende Regel zur prüfgerechten Formtolerierung einzuhalten:

Prüfgerechte Tolerierung

Regel R1: Prüfgerechte Formtolerierung

Bei jedem Geometrieelement, das für die Bauteilfunktion oder als Bezug für andere Elemente Verwendung findet, ist zuerst die Formtreue sicherzustellen. Denn erst wenn man die Form eines Bauteils im Griff hat, kann man die Einhaltung von Maßen und Lagetoleranzen gewährleisten.

D Bilder und Tabellen

D Bilder und Tabellen

Bilder	- _	
verzei	chn	is

Bild 1: Technische Zeichnung eines Lagerbocks (Auszug)	10
Bild 2: Zusammenarbeit in der industriellen Produktion	14
Bild 3: Literaturempfehlungen Form und Lage	19
Bild 4: Geometrieelemente in den Produktentstehungsphasen	23
Bild 5: Produktentstehungsphasen mit instabilem Bezug	24
Bild 6: Formtolerierung am Beispiel eines Lagerbocks	28
Bild 7: Formtolerierung einer Bohrung	30
Bild 8: Rundheitstoleranz	30
Bild 9: Geradheitstoleranz einer Ebene	32
Bild 10: Geradheitstoleranz einer Achse	35
Bild 11: Gemeinsames Prüfen mehrerer Achsabschnitte	36
Bild 12: Geradheitstoleranz einer Mantellinie	37
Bild 13: Profilformtoleranz einer Linie	39
Bild 14: Zylinderformtoleranz einer Welle	40
Bild 15: Ebenheit einer Fläche	42
Bild 16: Ebenheit einer Mittelebene	43
Bild 17: Profilformtoleranz einer Fläche	45
Bild 18: Beispiele für Größenmaße: 1. \varnothing Bohrung, 2. \varnothing Welle, 3. Nutbreite .	47
Bild 19: Arten der Größenmaßtolerierung	47
Bild 20: Größenmaßtolerierung am Beispiel eines Lagerbocks	49
Bild 21: Größenmaße mit SCS und ACS	51
Bild 22: Maß unabhängig von Form laut [DIN EN ISO 8015]	53
Bild 23: Extremfall sich überlagernder Maß- und Formabweichung	54
Bild 24: Tolerierung nach Hüllbedingung	54
Bild 25: Extremfälle der Maß- und Formabweichung bei der Hüllbedingung.	55
Bild 26: Tolerierung nach [DIN 7167]	56
Bild 27: Anwendung der Hüllbedingung am Beispiel eines Lagerbocks	56
Bild 28: Extremfall von sich überlagernder Maß- und Formabweichung	58
Bild 29: Beispiel für eine Rechtwinkligkeitstolerierung mit Bezugselement "F	11
an einem Lagerbock	61
Bild 30: Beispiele für Bezugselemente an einem Lagerbock	62
Bild 31: Unsichere Bezugsbestimmung bei geringer Ausdehnung des	
Bezugselements (Beispiel: Koaxialität)	65
Bild 32: Sechs Freiheitsgrade im Raum	66
Bild 33: Zwei mögliche Bezugssysteme am Lagerbock	69

Bild 34: Vertauschte Bezugsreihenfolge	70
Bild 35: Bezugsstellen an einer Freiformfläche	71
Bild 36: Bezug – Werkstück gespannt zwischen zwei Spitzen	73
Bild 37: Richtungstolerierung am Beispiel eines Lagerbocks	75
Bild 38: Parallelitätstoleranz einer Ebene	76
Bild 39: Rechtwinkligkeitstoleranz einer Ebene	76
Bild 40: Neigungstoleranz einer Ebene	76
Bild 41: Ebene oder Achse als Bezugselement	77
Bild 42: Parallelitätstolerierung ohne Betrachtung der Formabweichunge	n nach
innen	79
Bild 43: Parallelitätstoleranz einer Achse mit zylindrischer Toleranzzone	79
Bild 44: Parallelitätstoleranz einer Achse mit einer Toleranzzone, die durc	:h zwei
parallele Ebenen aufgespannt wird	79
Bild 45: Parallelitätstoleranz mit Toleranzzonen-Richtungsanzeiger	80
Bild 46: Parallelität von Mantellinien zueinander	82
Bild 47: Unterschied Neigungs- zu Winkelmaßtoleranz	84
Bild 48: Ortstolerierung am Beispiel eines Lagerbocks	86
Bild 49: Ortstoleranzzone	87
Bild 50: Positionstolerierung einer Ebene	88
Bild 51: Position einer Achse mit zylinderförmige Toleranzzone	89
Bild 52: Position einer Achse mit quaderförmiger Toleranzzone	89
Bild 53: Achsberechnung für Positionstoleranz	90
Bild 54: Symmetrietoleranz	91
Bild 55: Koaxialitätstoleranz	92
Bild 56: Konzentrizitätstoleranz	93
Bild 57: Koaxialität mit nicht prüfgerechtem Bezug	94
Bild 58: Koaxialität mit prüfgerechtem Bezug	94
Bild 59: Profilformtoleranz einer Linie mit Bezug	95
Bild 60: Profilformtoleranz einer Fläche mit Bezug	95
Bild 61: Umlaufende Profilformtoleranzzone einer Fläche	97
Bild 62: Umlaufende und vollflächige Toleranz	97
Bild 63: Nochmals: Positionstolerierung	99
Bild 64: Abstandstolerierung	99
Bild 65: Problematik der Maßtolerierung von Abständen	100
Bild 66: Maßkette	100
Bild 67: Maßtolerierung vs. Positionstolerierung	100
Bild 68: Beispiel für eine Lochgerade	102

190 D Bilder und Tabellen

Bild 69: Verbundtoleranz	105
Bild 70: Beispiel einer Verbundtoleranz	106
Bild 71: Beispiel einer Einzeltoleranz	106
Bild 72: Lochbildbemaßung mit Positionen	107
Bild 73: Lochbildbemaßung mit Maßtoleranzen	107
Bild 74: Gekrümmtes Lochbild mit Maßtoleranzen	107
Bild 75: Planlauf einer Stirnfläche	110
Bild 76: Gesamtplanlauf einer Stirnfläche	110
Bild 77: Rundlauf einer Mantelfläche	112
Bild 78: Gesamtrundlauf einer Mantelfläche	112
Bild 79: Maximum-Material-Bedingung am Lochkreisbeispiel	114
Bild 80: Beispiel 1 zur Maximum-Material-Bedingung	115
Bild 81: Beispiel 1 ohne Maximum-Material-Bedingung	115
Bild 82: Beispiel 1 mit Maximum-Material-Bedingung	116
Bild 83: Beispiel 2 mit doppelter Maximum-Material-Bedingung	117
Bild 84: Beispiel 2 mit Toleranzzonen	117
Bild 85: Geradheitsabweichung mit Maximum-Material-Bedingung	118
Bild 86: Extremfälle der Geradheitsabweichung bei der Maximum-Materia	-
Bedingung	119
Bild 87: Geradheitsabweichung mit Hüllbedingung	119
Bild 88: Extremfälle der Geradheitsabweichung bei der Hüllbedingung	119
Bild 89: Extremfall der Geradheitsabweichung mit R-Bedingung	120
Bild 90: Umgekehrte Toleranzausnutzung	121
Bild 91: Minimum-Material-Bedingung am tolerierten Wert	122
Bild 92: Beispiel zur Minimum-Material-Bedingung	122
Bild 93: Minimum-Material-Bedingung mit R-Bedingung	123
Bild 94: Eingeschränkte Geradheitstoleranz	126
Bild 95: Eingeschränkter Bezugsbereich	128
Bild 96: Möglichkeiten der Bezugsbereichseinschränkung	128
Bild 97: Kegel als Bezug in seinen Freiheitsgraden eingeschränkt	129
Bild 98: Projizierte Toleranzzone	130
Bild 99: GPS-Normenpyramide	136
Bild 100: Allgemeintoleranzen (gestrichelt) für eine technische Zeichnung	mit
"ISO 2768-mH"	136
Bild 101: Beispiel für eine Toleranzangabe mit Assoziationskriterium	138
Bild 102: Beispiel für ein Assoziationskriterium am Bezug	139

Anhang 191

Bild 103: Unterschiedliche Wellenlängen und Amplituden von	
Schwingungen1	42
Bild 104: Resultierendes Profil aus Addition einzelner Wellen1	43
Bild 105: Überlagerungen von Wellen unterschiedlicher A und λ 14	43
Bild 106: Darstellung der einzelnen Schwingungsbestandteile als Spektrum.14	44
Bild 107: Grafik des Spektrums einer technischen Oberfläche (Drehteil)1	44
Bild 108: Interpretierte Grafik des Spektrums einer technischen Oberfläche	
(Drehteil)1	45
Bild 109: Dreiwegebox als Analogie zum digitalen Filtern in der	
Messtechnik1	50
Bild 110: Hochpass, Bandpass, Tiefpass in der Koordinatenmesstechnik1	51
Bild 111: Tiefpassfilterung1	52
Bild 112: Schematische Darstellung der Tiefpassfilterung1	53
Bild 113: Filterung mit Gaußfilter (Tiefpass)1	53
Bild 114: Filtervorlauf- und -nachlaufstrecken beim Gaußfilter1	54
Bild 115: Zylinderlauffläche mit Honmarken [AUKOM 3]1	55
Bild 116: Ebenheitsabweichungen auf einer Zylinderkopffläche mit	
unterschiedlichen $\lambda_{\text{\tiny C}}$ [AUKOM 3]1	55
Bild 117: Hochpassfilterung1	
Bild 118: Bandpassfilterung1	
Bild 119: Unterschied Wellentiefe zu Amplitude1	59
Bild 120: Morphologisches Filter: rechnerische Simulation der mechanischen	
Filterwirkung1	61
Bild 121: Entscheidungsregeln nach [DIN EN ISO 14253-1]1	64
Bild 122: Einflüsse auf das Messergebnis (Koordinatenmessgerät)1	65
Bild 123: Längenmessabweichungsdiagramm für ein System mit	
längenabhängiger zulässiger Abweichung1	
Bild 124: Vorgehensweise bei der Messsystemanalyse	71
Tabelle 1: Abweichungsarten nach DIN 4760	25 <i>Tabellen-</i>
Tabelle 2: Bespiele für typische Fertigungsabweichungen	26 <i>verzeichnis</i>
Tabelle 3: Mantellinienmessung ohne und mit Vorausrichtung	
Tabelle 4: Formabweichungen von Zylindern und geeignete Tolerierungsarter	า
zur Erfassung	41
Tabelle 5: Gebräuchlichste Modifizierer	48
Tabelle 6: Hüll- und Unabhängigkeitsbedingung in ISO, ASME und DIN 7176	58
Tabelle 7: Mathematische Auswertung bei der Prüfung nach Hüllbedingung.	59

192 D Bilder und Tabellen

Tabelle 8: Wichtige Bezugselemente und Freiheitsgrade67
Tabelle 9: Weitere Bezugselemente und Freiheitsgrade
Tabelle 10: Bezugssystem und fixierte Freiheitsgrade69
Tabelle 11: Unsymmetrische Profiltoleranzzone96
Tabelle 12: Tolerierung von Lochbildern
Tabelle 13: Unterschiede zwischen R-Bedingung und 0-M-Tolerierung121
Tabelle 14: Möglichkeiten der Toleranzzoneneinschränkung127
Tabelle 15: Allgemeintoleranzen für Längenmaße nach DIN ISO 2768-1 133
Tabelle 16: Allgemeintoleranzen für Winkelmaße nach DIN ISO 2768-1133
Tabelle 17: Allgemeintoleranzen für Geradheit und Ebenheit nach DIN ISO
2768-2
Tabelle 18: Allgemeintoleranzen für Rechtwinkligkeit nach DIN ISO 2768-2.134
Tabelle 19: Schematische Beispiele für Spektren bestimmter
Formabweichungen
Tabelle 20: Praktische Beispiele für Spektren bestimmter Formabweichungen
nach [Seewig 2000]147
Tabelle 21: Beispiele für Spektralanalyse149
Tabelle 22: Anwendungsbeispiele der Fourier-Analyse [nach Meyer 2006]156
Tabelle 23: Übersicht über die MPE (Auszug)168
Tabelle 24: Überblick über die Eignungsverfahren172
Regel R1: Prüfgerechte Formtolerierung46
Regel R2: Prüfgerechte Größenmaßtolerierung52
Regel R3: Prüfgerechte Unabhängigkeits- und Hüllbedingung59
Regel R4: Prüfgerechter Bezug73
Regel R5: Prüfgerechte Richtungstolerierung85
Regel R6: Prüfgerechte Ortstolerierung
Regel R7: Prüfgerechte Lochbildtolerierung108
Regel R8: Prüfgerechte Lauftolerierung113
Regel R9: Funktions- und prüfgerechte Toleranzausweitung
Regel R10: Prüfgerechte Einschränkung von Toleranzzone und
Bezugsbereich
Regel R11: Allgemeintoleranzen
Regel R12: Prüfgerechte Spezifikationsvorgaben162
Regel R13: Prüfgerechte Messmittelwahl173
Regel R14: Aufgabenorientierte Zusammenarbeit
neger KTA. Adigabenonemente Zasammenarben

Regel-

verzeichnis

194 E Index

E Index

(A) 37	Ablaufdauer 182
(AD)145	Abstandstolerierung 105
(C) 149	Abweichungen 12
(CA)50	Achse 36
(CC) 50	ACS 33, 98, 118
(CV) 50	Allgemeintoleranz14
(E) 57, 125, 141	ALS3!
(F)	Altered Default 145
(G) 149	Amplitude153
(GC)51	Analysefähiger Bezug 66
(GG)50	Antastabweichung 182
(GN)50, 62	Any Cross Section 33, 118
(GX)50, 62	Any Longitudinal Section 35
(I)	Anzeiger für Richtung 84
(LP) 50	Anzeiger für Schnittebene 84
(LS) 50	Arbeitsfolgenbezogener
(M) 110, 121	Produktionsbezug66
(N)	ASME Y14.5 23, 45, 12
(P)	ASME-Regel Nr. 1 59
(R)	ASME-Regel Nr. 2 34
(S)132	Assoziationskriterium
(SM)	At-Line-Prüfung 56
(SN) 52, 62	AUKOM20
(SR)52	Äußere Hülle57
(SX)52, 62	Äußere Tangentialebene 91, 149
(T) 82, 149	Äußeres Tangentialelement 75
(U) 102	Auswertemethode 34
(X)	Auswerteverfahren 148
[PL] 137	AVG 53
[PT]137	Bandpassfilter
[SL]	Bezug 64
><	Bezugsdreieck64
0-L-Tolerierung 131	Bezugselement 64
0-M-Tolerierung 128	Bezugsmittelebene 90
3-2-1-Bezug74	Bezugsmittellinie
3-2-1-Regel74	Bezugsmittelpunkt

Anhang 195

Bezugsrahmen 64	Drei-Ebenen-Bezugssystem
Bezugsreihenfolge 73	Durchmesserzeichen
Bezugsstelle74	Ebenheitsabweichung26
Bezugssystem 69	Ebenheitstoleranz einer Fläche 44
Bohrbild	Ebenheitstoleranz einer Mittelebene 45
CAD-Datensatz 11	Echtzeit-Spektralanalyse 160
Common Zone38	Eignung 183
CZ38, 111	Eingeschränkte Toleranzzone 134
Digitales Filtern 162	Eingeschränkter Bezugsbereich 136
DIN 16742143	Erfasste Geometrie
DIN 3302143	Exzentrizität157
DIN 40680143	F 151
DIN 4760	Fähigkeit 180, 184
DIN 6930-2 143	Feinzeiger 118
DIN 71606 144	Fertigung12
DIN 716759	Fertigungsabweichungen27
DIN 7526 144	Filter151
DIN 7527 144	Filternachlaufstrecke
DIN 7715-1143	Filtervorlaufstrecke 166
DIN EN 10243 144	Formabweichung26
DIN EN 12020 143	Formfreie Mittelebene 82
DIN EN 586-3 144	Formprüfgerät 33
DIN EN 755-9 143	Formtolerierung26
DIN EN ISO 1 31	Fourier-Analyse 151, 160
DIN EN ISO 10579 76	Freier Zustand76
DIN EN ISO 1101 38	Freiformfläche
DIN EN ISO 13920 143	Freiheitsgrad69
DIN EN ISO 14253 177	Funktion 12
DIN EN ISO 14405 49	G 151
DIN EN ISO 16610 172, 174	Gauß Bestfit50
DIN EN ISO 22432 12	Gaußebene149
DIN EN ISO 2692 121	Gaußfilter 151
DIN EN ISO 286	Gaußkreis 149
DIN EN ISO 5459 72	Gaußzylinder 149
DIN EN ISO 8015 56	GD8T23
DIN EN ISO 8062 143	Gemeinsame Toleranzzone 38
DIN EN ISO 9013 143	Gemeinsamer Bezug 74
DIN ISO 2768 141	Genauigkeit 177
Dreh-/Schwenkgelenk	Geometrische Produktspezifikation . 13
Drehtisch	Geradheitsabweichung
Dreibogengleichdickform	Geradheitstoleranz einer Achse 36

196 E Index

Geradheitstoleranz einer Ebene 34	Koaxialitätstoleranz 90
Geradheitstoleranz einer Kante 36	Koaxialitätstoleranz
Geradheitstoleranz von Mantellinien39	Kompensator132
Gesamtplanlauftolerierung 117	Konstruktionszeichnung 10
Gesamtrundlauftolerierung 119	Kontur152
Gleichdickform 151	Konzentrizitätstoleranz 90
Goldene Regel der Messtechnik 180	Konzentrizitätstoleranz 97
GPS 144	Koordinatenmessgerät 33, 178
GPS-Normen	Koplanarität37
GPS-Normenkette144	Kugelförmige Toleranzzone 96
GPS-System 11, 144	Kuppen27
GR&R-Test 184	L130
Grenzwellenlänge 151, 163	Lageabweichung 26
Grenzwellenzahl 163	Lagetoleranz79
Größenmaßtolerierung 49	Lambda 153
Grundtoleranz	Längenmessabweichung 180, 182
GUM 185	Laufabweichung 26
Haarlineal 35	Lauftoleranz 117
Harmonische 157	Least Material Condition 129
Harmonische Schwingung 151	Least Material Requirement 129
Helixbahn 120	Lehre 57, 125
Hochpassfilter 162	LMC 129
Höchstzulässige Abweichung 91	LMR129
Hüllbedingung56, 57	Lochbild109
Hüllelement 91	Lochgerade109
Hüllkreis 50, 148	LSCI149
Hüllprinzip 56	LSCO 149
Hüllzylinder50, 148	LSCY149
In-Line-Prüfung56	LSPL149
Innere Hülle 57	Mantellinie 37, 40, 86
Innerer Bezug 110	Maßabweichung26
Invokationsprinzip 144	Maßkette106
ISA22	Maßtolerierung eines Abstandes 105
ISO22	Maximal zulässige Messabweichung
ISO/IEC Guide 98-3 185	180
ISO-Gremien 144	Maximum Material Condition 121
ISO-Maßtoleranzsystem 49	Maximum Material Requirement 121
ISO-Toleranzfeld	Maximum Permissible Error 180
Kandidatenmethode	Maximum-Material-Bedingung 109
Kartesisches Koordinatensystem 72	121
Kleinste-Quadrate-Methode 50	MCCI 148

Anhang 197

MCCY 148	Position einer Achse 94
Mehrfachtaster 183	Positionstoleranz 90
Mehrwellennormal 158	Primärer Bezug 69
Messmittelfähigkeit 180	Profilformtoleranz101
Messsystemanalyse 184	Profilformtoleranz einer Fläche 46
Messuhr 118	Profilformtoleranz einer Linie 41
Messunsicherheit 177	Projizierte Toleranzzone
MICI 148	Prüfgerechter Bezug 66
MICY148	Prüfgerechter Bezug 77
Minimum-Material-Bedingung 129	Prüfmitteleignung 177
Mittelebene 37	Prüfprozess
MMC121	Prüfprozessfähigkeit
MMR 121	Prüfung 13
Modifizierer 50	Punktewolke24
Morphologische Filter 173	Querprofil170
MPE 180	Rangordungsmaß 52
NC 67	Rattermarke
Neigungstoleranz	Rattermarken27
Nenngeometrie 23	Rauheit27
Nennmaß 49	Rauheiten 157
Nicht konvex 67	Rauheitsprüfung 170
Normenpyramide 144	R-Bedingung 127
Nur Richtung 111	Rechtwinkligkeitstoleranz
Obere Toleranzgrenze	Referenztemperatur31
Oberes Abmaß	Regardless of Feature Size 132
Oberflächenprüfung 170	Reziprozitätsbedingung 127
Off-Line-Prüfung57	RFS 132
Ohne Form 85, 95, 100	Richtung79
Ort 90	Richtungsabweichung26
Ortsanweichung	Richtungsanzeiger 84
Ortsstoleranz 90	Richtungstoleranz
OTPL149	Riefen27, 157
Ovalität 157	Rillen 27, 157
Paarungsfähigkeit 125	Risse 27
Parallelitätstoleranz	Robuste Gaußfilter 173
Passungsfähigkeit 125	Rotatorischer Freiheitsgrad 69
Peak 159	RPS-System75
Pferchelement	Rundheitsabweichung 26
Pferchkreis50, 148	Rundheitstoleranz32
Pferchzylinder51, 148	Rundlauftolerierung 119
Planlauftolerierung 117	S 151

198 E Index

S∅96	Umschlagsmessung	87
Scanningantastabweichung 182	Unabhängigkeitsbedingung	56
Scanningzeit 182	Unabhängigkeitsprinzip	56
Schnittebenenanzeiger 84	Untere Toleranzgrenze	49
Schuppen 27	Unteres Abmaß	49
Schwimmende Tolerierung 38, 110	UPR	163
SCS53	UZ	102
Sekundärer Bezug 69	VDA 5	186
Separate Zone	VDI/VDE 2601	27
Spektralanalyse	Veränderliche Toleranzzone	135
Spektrum 152	Verbundtoleranz	112
Spielpassung 125	Verbundtoleranzrahmen	112
Spirallinie 118	Verbundtolerierung	112
Spline-Filter 151, 173	Vollflächige Zone	103
Stecklehre	W/U 1	55, 163
Symmetrietoleranz90	Welle pro Umdrehung	155
Symmetrietolerierung96	Wellen pro Umdrehung	151
SZ38, 111	Wellenlänge 1	53, 172
Tangentialelement	Wellentiefe	172
TED 53	Welligkeit	27
Tertiärer Bezug 69	Welligkeiten	157
Theoretisch exaktes Maß 53	Wendeltreppenform	120
Tiefpassfilter 162	Werkstückoberfläche	152
Toleranzaufweitung 121	Wiederholspannweite	182
Toleranzen12	Winkelmaß	88
Toleranzpfeil32	Winkelmaßtolerierung	88
Toleranzrahmen32	Wirkliche Geometrie	23
Toleranzsymbol32	Zugeordnete Geometrie	24
Toleranzwert 32	Zusammenbaufähigkeit	125
Toleranzzoneneinschränkung 135	Zweipunktmaß	50
Toleranzzonen-Richtungsanzeiger 84	Zylinderförmige Toleranzzone.	94
Translatorischer Freiheitsgrad 69	Zylinderformtoleranz	42
Tschebyscheff	Zylindrizität	42
Überlagerung von Wellen 153	λ	153
Umlaufende Zone 103		

Eine technische Zeichnung (bzw. ein CAD-Datensatz) muss alle relevanten Angaben enthalten, um eine sichere Funktion, eine kostengünstige Produktion und eine zuverlässige Prüfung eines Werkstücks zu gewährleisten. Eine gute technische Zeichnung ist also funktionsgerecht, fertigungsgerecht und prüfgerecht.

Mit den GPS-Normen – und insbesondere mit den neusten Änderungen in der Normung – wurde eine umfassende formale Beschreibungssprache für geometrische Vorgaben an ein Produkt geschaffen. Damit lassen sich die genannten Anforderungen in einer technischen Zeichnung eindeutig, aufgabengerecht und vollständig umsetzen. Deshalb werden in diesem Buch die verschiedenen Aspekte der funktions-, fertigungs- und vor allem auch prüfgerechten Bemaßung und Tolerierung von Werkstücken aufgezeigt. Weiterhin wird ein Überblick über das internationale System der GPS-Normen gegeben. Hierbei wird auch auf erweiterte Möglichkeiten zur Definition der Messstrategie in der technischen Zeichnung eingegangen. Weiterhin werden 14 Regeln zur prüfgerechten Tolerierung hergeleitet und erklärt.

Dr. Robert Roithmeier ist bei der Carl Zeiss Industrielle Messtechnik GmbH zuständig für Wissensmanagement und neue Anwendungsgebiete. Er ist bei AUKOM e.V. verantwortlich für das Schulungskonzept und die AUKOM-Schulungsinhalte

und Ausbilder der internationalen AUKOM-Trainer. Er hat drei Fachbücher zur Koordinatenmesstechnik sowie viele Artikel und Buchbeiträge publiziert.

Robert Roithmeier
© Oberkochen Germany 2016
www.zeiss.de/imt

ISBN 978-3-945380-07-9

49,90 €

Weiter zur Bestellung im Online-Shop

Carl Zeiss Industrielle Messtechnik GmbH

73446 Oberkochen

Germany

Vertrieb: +49 7364 20-6336 Service: +49 7364 20-6337 Fax: +49 7364 20-3870

Email: info.metrology.de@zeiss.com

www.zeiss.de/imt